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Abstract

Methods for genetic risk prediction have been widely investigated in recent years. However, most 

available training data involves European samples, and it is currently unclear how to accurately 

predict disease risk in other populations. Previous studies have used either training data from 

European samples in large sample size or training data from the target population in small sample 

size, but not both. Here, we introduce a multi-ethnic polygenic risk score that combines training 

data from European samples and training data from the target population. We applied this 

approach to predict type 2 diabetes (T2D) in a Latino cohort using both publicly available 

European summary statistics in large sample size (Neff=40k) and Latino training data in small 

sample size (Neff=8k). Here, we attained a >70% relative improvement in prediction accuracy 

(from R2=0.027 to R2=0.047) compared to methods that use only one source of training data, 

consistent with large relative improvements in simulations. We observed a systematically lower 

load of T2D risk alleles in Latino individuals with more European ancestry, which could be 

explained by polygenic selection in ancestral European and/or Native American populations. We 

predict T2D in a South Asian UK Biobank cohort using European (Neff=40k) and South Asian 

(Neff=16k) training data and attained a >70% relative improvement in prediction accuracy, and 

application to predict height in an African UK Biobank cohort using European (N=113k) and 

African (N=2k) training data attained a 30% relative improvement. Our work reduces the gap in 

polygenic risk prediction accuracy between European and non-European target populations.
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Introduction

Genetic risk prediction is an important and widely investigated topic because of its potential 

clinical application as well as its application to better understand the genetic architecture of 

complex traits (Chatterjee, Shi, & García-Closas, 2016). Many polygenic risk prediction 

methods have been developed and applied to complex traits. These include polygenic risk 

scores (PRS)(Chatterjee et al., 2013; Dudbridge, 2013; International Schizophrenia 

Consortium et al., 2009; Palla & Dudbridge, 2015; Shah et al., 2015; Shi et al., 2016; Stahl 

et al., 2012; Vilhjálmsson et al., 2015), which use summary association statistics as training 

data, and Best Linear Unbiased Predictor (BLUP) methods and their extensions (de los 

Campos, Gianola, & Allison, 2010; Golan & Rosset, 2014; Maier et al., 2015; Moser et al., 

2015; Speed & Balding, 2014; Tucker et al., 2015; Weissbrod, Geiger, & Rosset, 2016; 

Zhou, Carbonetto, & Stephens, 2013), which require individual-level genotype and 

phenotype data.

However, all of these methods are inadequate for polygenic risk prediction in non-European 

populations, because they consider training data from only a single population. Existing 

training data sets have much larger sample sizes in European populations, but the use of 

European training data for polygenic risk prediction in non-European populations reduces 

prediction accuracy, due to different patterns of linkage disequilibrium (LD) (or potentially 

due to different causal effects) (International Schizophrenia Consortium et al., 2009; 

Rosenberg et al., 2010; Scutari, Mackay, & Balding, 2016; Vilhjálmsson et al., 2015). For 

example, ref. (Vilhjálmsson et al., 2015) reported a relative decrease of 53-89% in 

schizophrenia risk prediction accuracy in Japanese and African-American populations 

compared to Europeans when applying PRS methods using European training data. An 

alternative is to use training data from the same population as the target population, but this 

would generally imply a much lower sample size, reducing prediction accuracy.

To tackle this problem, we developed an approach that combines PRS based on European 

training data with PRS based on training data from the target population. The method takes 

advantage of both the accuracy that can be achieved with large training samples (Chatterjee 

et al., 2013; Dudbridge, 2013) and the accuracy that can be achieved with training data 

containing the same LD patterns as the target population. In application to predict type 2 

diabetes (T2D) in Latino target samples in the SIGMA T2D data set (SIGMA Type 2 

Diabetes Consortium et al., 2014), we attained a >70% relative improvement in prediction 

accuracy (from R2=0.027 to R2=0.047) compared to methods that use only one source of 

training data. We attained similar relative improvements in simulations. We also obtained a 

>70% relative improvement in an analysis to predict T2D in a South Asian UK Biobank 

cohort, and a 30% relative improvement in an analysis to predict height in an African UK 

Biobank cohort.

Materials and Methods

Polygenic risk score using a single training population

Polygenic risk scores are constructed using SNP effect sizes estimated from genome-wide 

association studies, which perform marginal regression of the phenotype of interest on each 
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SNP in turn. Explicitly, for continuous traits, we estimate effect sizes  (where i = 1,…,M 
indexes genetic markers) using the model y = b0 + bigi + bPCPC + ε, where gi denotes 

genotypes at marker i, PC denotes one or more principal components used to adjust for 

ancestry, and ε denotes environmental noise. For binary traits, we use the analogous logistic 

model logit[P(y=1) ] = b0 + bigi + bPCPC + ε.

Given a vector of estimated effect sizes  from a genome-wide association study performed 

on a set of training samples, the polygenic risk score (International Schizophrenia 

Consortium et al., 2009) (PRS) for a target individual with genotypes gi is defined as 

. In practice, rather than computing the PRS using estimated effect sizes for all 

available genetic markers, the PRS is computed on a subset of genetic markers obtained via 

informed LD-pruning (Stahl et al., 2012) (also known as LD-clumping) followed by P-value 

thres holding (International Schizophrenia Consortium et al., 2009). Specifically, this 

“pruning + thres holding” strategy has two parameters, RLD
2 and PT, and proceeds as 

follows. First, we prune the SNPs based on a pair wise threshold RLD
2, removing the less 

significant SNP in each pair (using PLINK; see Web Resources). Second, we restrict to 

SNPs with an association P-value below the significance threshold PT.

The parameters RLD
2 and PT are commonly tuned using on validation data to optimize 

prediction accuracy (International Schizophrenia Consortium et al., 2009; Stahl et al., 2012). 

While in theory this procedure is susceptible to over fitting, in practice, validation sample 

sizes are typically large, and RLD
2 and PT are selected from a small discrete set of parameter 

choices, so over fitting is considered to have a negligible effect. Accordingly, in this work, 

we consider RLD
2 ∈ {0.1, 0.2, 0.5, 0.8} and PT ∈ {1.0, 0.8, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.05, 

0.02, 0.01, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8}, and we always report results corresponding 

to the best choices of these parameters. In all of our primary analyses involving two training 

populations (see below), values of RLD
2 and PT were optimized based only on PRS in a 

single training population, to ensure that PRS using two training populations did not gain 

any relative advantage from the optimization of these parameters.

In this work, we specifically consider PRS built using European (EUR), Latino (LAT), South 

Asian (SAS), or African (AFR) training samples. We use the notation PRSEUR to denote 

PRS built using European samples, and analogously for the other populations.

Polygenic risk score using two training populations

Given a pair of polygenic risk scores computed as above using two distinct training 

populations, we define the multi-ethnic PRS with mixing weights α1 and α2 as the linear 

combination of the two PRS with these weights: e.g., for EUR and LAT, we define 

PRSEUR+LAT = α1PRSEUR + α2PRSLAT. We employ two different approaches to avoid 

overfitting. In our primary analyses, we estimate mixing weights α1 and α2 using validation 

data and compute adjusted R2 to account for the additional degree of freedom. In our 

secondary analyses, we estimate mixing weights α1 and α2 using cross-validation (see 

Assessment of methods below).
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For comparison purposes in analyses of real phenotypes, we also evaluated a meta-analysis 

PRS (e.g. EUR-LAT-meta) using a sample size weighted average of estimated effect sizes in 

each population (Zeggini et al., 2008); for dichotomous phenotypes we weighted by 

effective sample size Neff=4/(1/Ncase+1/Ncontrol). We performed LD-pruning and P-value 

thresholding using P-values obtained from the meta-analysis, using the LD reference panel 

from the population that achieved the highest prediction accuracy.

Polygenic risk score using one or two training populations and genetic ancestry

We further define polygenic risk scores that include an ancestry predictor, namely, the top 

principal component in a given data set, computed using the union of all available (training 

and validation) samples from that population. (We considered only the top PC in each data 

set that we analyzed, because lower PCs had a squared correlation with phenotype lower 

than 0.005 in each case; we recommend that ancestry predictors restrict to PCs with squared 

correlation with phenotype of 0.005 or larger.) We define a polygenic risk score LAT+ANC 

with mixing weights α1 and α2 as PRSLAT+ANC = α1PRSLAT + α2 PC, and we define a 

polygenic risk score EUR+LAT+ANC with mixing weights α1, α2 and α3 as 

PRSEUR+LAT+ANC = α1PRSEUR + α2PRSLAT + α3PC. As above, we employ two different 

approaches to avoid overfitting: in our primary analyses, we estimate mixing weights using 

validation data and compute adjusted R2; in our secondary analyses, we estimate mixing 

weights using cross-validation.

Assessment of methods

We assessed the accuracy of polygenic risk scores in validation samples (independent from 

samples used to estimate effect sizes). We used adjusted R2 as the accuracy metric for 

continuous traits and liability-scale adjusted R2 (ref. (Lee, Goddard, Wray, & Visscher, 

2012)) for binary traits. Adjusted R2 is defined as , where p ∊ 
{1,2,3} is the number of PRS or ANC components in the mixture, n is the number of 

validation samples, and  is the raw (unadjusted) R2. The adjusted R2 metric roughly 

corrects for increased model complexity in multi-component PRS, so in our primary 

analyses, we report accuracy as adjusted R2 using best-fit mixing weights  estimated using 

the validation data.

To verify that this metric provides robust model comparisons, we also performed auxiliary 

analyses in which we used 10-fold cross-validation: specifically, for each left-out fold in 

turn, we estimated mixing weights using the other 9 folds and evaluated adjusted R2 for PRS 

computed using these weights on the left-out fold. We then computed average adjusted R2 

across the 10 folds. (When analyzing data from an unbalanced case-control study with 

#cases ≪ #controls, we used stratified 10-fold cross-validation, selecting the folds such that 

each fold had the same case-control ratio; this applies only to the South Asian UK Biobank 

T2D analysis.)

Finally, for analyses in which we needed to use samples from the same cohort for both 

building PRS (i.e., estimating effect sizes ) and validation, we also used cross-validation. In 

our primary analyses, we employed 10-fold cross-validation, using 90% of the cohort to 
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estimate  and the remaining 10% of the cohort to validate predictions (using the adjusted 

R2 metric with best-fit mixture weights ). In our secondary analyses, we employed 10×9-

fold cross-validation, in which 90% of the cohort was used to estimate both  and  and the 

remaining 10% of the cohort was used to validate predictions. To estimate , we iteratively 

split the 90% set of training samples into an 80% training-training set and a 10% training-

test set; we estimated  in the 80% training-training set and computed a PRS for the 10% 

training-test set for each of the 9 training-test folds, and we then performed a single 

regression of phenotype against each PRS across the entire 90% set of training samples to 

estimate . Finally, we re-estimated  for the final test prediction using the entire 90% set 

of training samples.

Simulations

We simulated quantitative phenotypes using real genotypes from European (WTCCC2) and 

Latino (SIGMA) data sets (see below). We fixed the proportion of causal markers at 1% and 

fixed SNP-heritability hg
2 at 0.5, and sampled normalized effect sizes βi from a normal 

distribution with variance equal to hg
2 divided by the number of causal markers. We 

calculated per-allele effect sizes bi as , where pi is the minor allele 

frequency of SNP i in the European data set. We simulated phenotypes as 

, where 𝜀j ∼ N(0, 1- hg
2).

In our primary simulations, we discarded the causal SNPs and used only the non-causal 

SNPs as input to the prediction methods (i.e. we simulated untyped causal SNPs, which we 

believe to be realistic). As an alternative, we also considered simulations in which we 

included the causal SNPs as input to the prediction methods (i.e., a scenario in which causal 

SNPs are typed). We performed simulations using all available European (WTCCC2) and 

Latino (SIGMA) training data (approximately a 2:1 ratio). We also performed simulations 

using training data in which Europeans were subsampled to attain a 1:1 ratio, as the relative 

performance of different methods may depend on relative training sample sizes; we 

considered different training sample sizes rather than different validation sample sizes, 

because the validation sample size does not (in expectation) impact the prediction accuracy.

We also performed simulations in which Latino phenotypes were explicitly correlated to 

ancestry (population stratification). In these simulations, we added a constant multiple of 

PC1 (representing European vs. Native American ancestry, with positive values representing 

higher European ancestry) to the Latino phenotypes such that the correlation between 

phenotype and PC1 was equal to −0.11, which is the correlation between the T2D phenotype 

and PC1 in the SIGMA data set.

We performed simulations under 4 different scenarios: (i) using all chromosomes, (ii) using 

chromosomes 1-4, (iii) using chromosomes 1-2, and (iv) using chromosome 1 only. The 

motivation for performing simulations with a subset of chromosomes was to increase N/M, 

extrapolating to performance at larger sample sizes, as in previous work (Vilhjálmsson et al., 

2015).
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Simulation data sets: WTCCC2 and SIGMA

Our simulations used real genotypes from the WTCCC2 and SIGMA data sets (rows 1-2 of 

Table 1). The WTCCC2 data set consists of 15,622 unrelated European samples from a 

multiple sclerosis study genotyped at 360,557 SNPs after QC (Sawcer et al., 2011; Yang, 

Zaitlen, Goddard, Visscher, & Price, 2014) (see Web Resources). The SIGMA data set 

consists of 8,214 unrelated Latino samples genotyped at 2,440,134 SNPs after QC (SIGMA 

Type 2 Diabetes Consortium et al., 2014) (see Web Resources). We restricted our 

simulations to 232,629 SNPs present in both data sets (with matched reference and variant 

alleles) after removing A/T and C/G SNPs to eliminate potential strand ambiguity.

Training and validation data sets for predicting type 2 diabetes in Latinos: DIAGRAM, 
SIGMA and UK Biobank

Our analyses of type 2 diabetes in Latinos used summary association statistics from the 

DIAGRAM data set and genotypes and phenotypes from the SIGMA data set (row 3 of 

Table 1). The DIAGRAM data set consists of 12,171 cases and 56,862 controls of European 

ancestry for which summary association statistics at 2,473,441 imputed SNPs are publicly 

available (see Web Resources) (Morris et al., 2012). As noted above, the SIGMA data set 

consists of 8,214 unrelated Latino samples (3,848 type 2 diabetes cases and 4,366 controls) 

genotyped at 2,440,134 SNPs after QC. QC procedures are reported in (SIGMA Type 2 

Diabetes Consortium et al., 2014), and include the removal of one individual from each pair 

of relatives with relatedness greater than 10% (n=532), as well as a PCA analysis using 

EIGENSTRAT (Price et al., 2006) (see Web Resources) to identify and remove samples with 

evidence of high African or East Asian ancestry (n=181).

SIGMA association statistics were computed with adjustment for 2 PCs, as in ref. (SIGMA 

Type 2 Diabetes Consortium et al., 2014). We restricted our analyses of type 2 diabetes to 

776,374 SNPs present in both data sets (with matched reference and variant alleles) after 

removing A/T and C/G SNPs to eliminate potential strand ambiguity. For the SIGMA data 

set, we used the top 2 PCs as computed in ref. (SIGMA Type 2 Diabetes Consortium et al., 

2014). We also performed an analysis of type 2 diabetes using imputed genotypes from the 

SIGMA T2D data set (SIGMA Type 2 Diabetes Consortium et al., 2014), restricting to 

2,062,617 SNPs present in both data sets (with matched reference and variant alleles) after 

removing A/T and C/G SNPs to eliminate potential strand ambiguity.

We performed a secondary analysis using 113,851 British samples from UK Biobank 

(Galinsky, Loh, Mallick, Patterson, & Price, 2016) (see Web Resources) as European 

training data (5,198 type 2 diabetes cases and 108,653 controls) (row 4 of Table 1). UK 

Biobank association statistics were computed with adjustment for 10 PCs (Galinsky, Loh, et 

al., 2016), estimated using FastPCA (Galinsky, Bhatia, et al., 2016) (see Web Resources). 

We computed summary statistics for 608,878 genotyped SNPs from UK Biobank after 

removing A/T and C/G SNPs to eliminate potential strand ambiguity. We analyzed 187,142 

SNPs present in the SIGMA and UK Biobank data sets. We defined type 2 diabetes cases in 

UK Biobank as “any diabetes” with “age of diagnosis > 30”. We note that the p-values at 

two top type 1 diabetes (T1D) loci (rs2476601, rs9268645) were only nominally significant 

(p∼0.05) for this T2D phenotype, indicating low contamination with T1D cases.
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Training and validation data sets for predicting type 2 diabetes in South Asians: DIAGRAM, 
SAT2D and UK Biobank

Our analysis of type 2 diabetes in South Asians used European summary association 

statistics from the DIAGRAM data set (described above), South Asian summary statistics 

data from the South Asian Type 2 Diabetes (SAT2D) Consortium (Kooner et al., 2011), and 

South Asian genotypes and phenotypes from UK Biobank (see Web Resources) as test data 

(row 5 of Table 1). The SAT2D data set consists of 5,561 South Asian type 2 diabetes cases 

and 14,458 South Asian controls for which we summary statistics for 2,646,472 imputed 

SNPs were available. The UK Biobank test data consists of 1,756 unrelated samples of 

South Asian ancestry (272 type 2 diabetes cases and 1,484 controls), genotyped at 608,878 

SNPs after QC, with the following self-reported ethnicity distribution: 52 Bangladeshi, 

1,301 Indian and 403 Pakistani. We removed one individual from each pair of relatives with 

relatedness greater than 20% (n=30). We performed a PCA analysis using EIGENSTRAT 

(Price et al., 2006) (see Web Resources) to identify and remove genetic outliers, but did not 

identify any outliers. We analyzed 208,400 SNPs present in the DIAGRAM, SAT2D and UK 

Biobank data sets after removing A/T and C/G SNPs to eliminate potential strand ambiguity.

Training and validation data sets for predicting height in Africans: UK Biobank and N'Diaye 
et al

Our analyses of height in Africans used European summary association statistics from UK 

Biobank (see Web Resources), African summary statistics from N'Diaye et al. (N'Diaye et 

al., 2011) and African genotypes and phenotypes from UK Biobank (row 6 of Table 1). 

European summary statistics from UK Biobank were computed using 113,660 British 

samples for which height phenotypes were available with adjustment for 10 PCs (Galinsky, 

Loh, et al., 2016), estimated using FastPCA (Galinsky, Bhatia, et al., 2016) (see Web 

Resources). The N'Diaye et al. (N'Diaye et al., 2011) data set consists of 20,427 samples of 

African ancestry with summary association statistics at 3,254,125 imputed SNPs. The UK 

Biobank data set consists of 1,745 unrelated samples of African ancestry, genotyped at 

608,878 SNPs after QC, with the following self-reported ethnicity distribution: 743 African, 

1,002 Caribbean. We removed one individual from each pair of relatives with relatedness 

greater than 20% (n=32). We performed a PCA analysis using EIGENSTRAT (Price et al., 

2006) (see Web Resources) to identify and remove genetic outliers, but did not identify any 

outliers. We restricted our analysis to 232,182 SNPs present in the UK Biobank and N'Diaye 

et al. data sets after removing A/T and C/G SNPs to eliminate potential strand ambiguity.

Results

Simulations

We performed simulations using real genotypes and simulated phenotypes (row 1 of Table 

1). We simulated continuous phenotypes under a non-infinitesimal model with 1% of 

markers chosen to be causal with the same effect size in all samples and SNP-heritability hg
2 

= 0.5 (see Methods); we report the average adjusted R2 and standard errors over 100 

simulations. We used WTCCC2 (Sawcer et al., 2011; Yang et al., 2014) data (15,622 

samples after QC; see Methods) as the European training data, and the SIGMA data 

(SIGMA Type 2 Diabetes Consortium et al., 2014) (8,214 samples) as the Latino training 
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and validation data (with 10-fold cross-validation). We simulated phenotypes using the 

232,629 SNPs present in both data sets and built predictions from these SNPs excluding the 

causal SNPs, modeling the causal SNPs as untyped (see Methods).

Prediction accuracies (adjusted R2) and optimal weights for the 5 main methods (EUR, LAT, 

LAT+ANC, EUR+LAT, EUR+LAT+ANC) are reported in Table 2A. In each case, the best 

prediction accuracy was attained using LD-pruning threshold RLD
2=0.8 (results using 

different LD-pruning thresholds are reported in S1 Table); the median value of the optimal 

P-value threshold PT was equal to 0.01 for EUR and 0.05 for LAT. On average, the EUR 

method performed only 23% better than the LAT method, despite having twice as much 

training data. This reflects a tradeoff between the larger training sample size for EUR and 

the target-matched LD patterns for LAT. EUR+LAT attained 64%-101% relative 

improvements vs. EUR and LAT respectively (and used a slightly larger weight for EUR 

than for LAT), highlighting the advantages of incorporating multiple sources of training 

data. When including an ancestry predictor, EUR+LAT+ANC attained a 10% relative 

improvement vs. EUR+LAT (≥80% relative improvement vs. EUR or LAT), reflecting small 

genetic effects of ancestry on phenotype that can arise from random genetic drift between 

populations at causal markers (which is better-captured by ancestry components than by 

SNPs used in a PRS).

For comparison purposes, we also performed simulations using training data in which 

Europeans were subsampled to attain a 1:1 ratio (row 2 of Table 1); prediction accuracies 

and optimal weights for the 5 main methods are reported in Table 2B. On average, the LAT 

method performed 190% better than the EUR method, again demonstrating the advantages 

of target-matched LD patterns. EUR+LAT attained 24%-260% relative improvements vs. 

LAT and EUR respectively (and used a larger weight for LAT than for EUR), again 

highlighting the advantages of incorporating multiple sources of training data.

Predictions using Latino effect sizes that were not adjusted for genetic ancestry (LATunadj, 

EUR+LATunadj, EUR+LATunadj+ANC, as compared to LAT, EUR+LAT, EUR+LAT+ANC) 

were much less accurate (S2 Table), as in previous work (C.-Y. Chen, Han, Hunter, Kraft, & 

Price, 2015); this is consistent with the fact that LATunadj predictions were dominated by 

genetic ancestry (adjusted R2 = 0.37; S3 Table). We also observed a modest correlation 

(adjusted R2 = 0.025) between the EUR prediction and genetic ancestry (S3 Table), again 

reflecting small genetic effects of ancestry on phenotype that can arise from random genetic 

drift between populations at causal markers. The relative performance of the different 

prediction methods was similar in simulations in which phenotypes explicitly contained an 

ancestry term, representing environmentally-driven stratification (S4 Table).

We extrapolated the results in Table 2 to larger sample sizes by limiting the simulations to 

subsets of chromosomes, as in previous work (Vilhjálmsson et al., 2015) (Fig 1 and S5 

Table). EUR+LAT+ANC was the best performing method in each of these experiments. We 

also performed simulations using predictions constructed using all SNPs including the 

causal SNPs (S1 Fig and S6 Table). In these experiments, EUR+LAT+ANC was once again 

the best performing method, and EUR performed much better than LAT, consistent with the 

Márquez-Luna et al. Page 8

Genet Epidemiol. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



larger training sample size for EUR and the fact that differential tagging of causal SNPs is of 

reduced importance when causal SNPs are typed.

Analyses of type 2 diabetes in Latinos

We applied the same methods to predict T2D in Latino target samples from the SIGMA T2D 

data set (row 3 of Table 1). We used publicly available European summary statistics from 

DIAGRAM(Morris et al., 2012) (12,171 cases and 56,862 controls; effective sample size = 

4/(1/Ncase + 1/Ncontrol) = 40,101) as European training data and SIGMA T2D genotypes and 

phenotypes (SIGMA Type 2 Diabetes Consortium et al., 2014) (3,848 cases and 4,366 

controls; effective sample size = 8,181) as Latino training and validation data, employing 

10-fold cross-validation.

Prediction accuracies (adjusted R2 on the liability scale (Lee et al., 2012), assuming 8% 

prevalence (Stahl et al., 2012)) and optimal weights for the 5 main methods (EUR, LAT, 

LAT+ANC, EUR+LAT, EUR+LAT+ANC) are reported in Table 3 (other prediction metrics 

are reported in S7 Table). In each case, the best prediction accuracy was obtained using LD-

pruning threshold RLD
2=0.8 (results using different LD-pruning thresholds are reported in 

S8 Table); the value of the optimal P-value threshold PT was equal to 0.05 for EUR and 0.2 

for LAT. EUR performed only 33% better than LAT despite the much larger training sample 

size, again reflecting a tradeoff between sample size and target-matched LD patterns. EUR

+LAT attained 75%-133% relative improvements vs. EUR and LAT respectively (and used a 

slightly larger weight for EUR than for LAT), again highlighting the advantages of 

incorporating multiple sources of training data. We also evaluated a meta-analysis PRS 

(EUR-LAT-meta) and determined that EUR+LAT attained a 19% relative improvement vs. 

EUR-LAT-meta (Table 3; also see S2 Fig), highlighting the advantages of optimizing mixing 

weights distinct from meta-analysis weights. Although adding an ancestry predictor to LAT 

produced a substantial improvement (LAT+ANC vs. LAT), adding an ancestry predictor to 

EUR+LAT produced an insignificant change in accuracy for EUR+LAT+ANC compared to 

EUR+LAT; this can be explained by the large negative correlation between the European 

PRS (EUR) and the proportion of European ancestry within Latino samples (R = -0.75; S9 

Table), such that any predictor that includes EUR already includes effects of genetic 

ancestry. This correlation is far larger than analogous correlations due to random genetic 

drift in our simulations (S3 Table), suggesting that this systematically lower load of T2D risk 

alleles in Latino individuals with more European ancestry could be due to polygenic 

selection (Robinson et al., 2015; Turchin et al., 2012) in ancestral European and/or Native 

American populations; previous studies using top GWAS-associated SNPs have also 

reported continental differences in genetic risk for T2D (R. Chen et al., 2012; Corona et al., 

2013). We observed a similar correlation (R=−0.77) when using British UK Biobank type 2 

diabetes samples as European training data (row 4 of Table 1; see Methods), confirming that 

this negative correlation is not caused by population stratification in DIAGRAM. As in our 

simulations, predictions using Latino effect sizes that were not adjusted for genetic ancestry 

(LATunadj, EUR+LATunadj, EUR+LATunadj+ANC, as compared to LAT, EUR+LAT, EUR

+LAT+ANC) were much less accurate (S10 Table), consistent with the fact that these 

predictions were dominated by genetic ancestry (S9 Table). We also computed predictions 

for each method using imputed SNPs from the SIGMA T2D data set; this did not improve 
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prediction accuracy, but predicting using two training populations still achieved the highest 

accuracy (S11 Table).

We investigated how the prediction accuracy of each method varied as a function of P-value 

thresholds, by varying either the EUR P-value threshold (Fig 2A and S12A Table) or the 

LAT P-value threshold (Fig 2B and S12B Table) between 10-8 and 1. In both cases, 

permissive P-value thresholds performed best, reflecting the relatively small sample sizes 

analyzed. However, the prediction accuracy of EUR+LAT+ANC was relatively stable, with 

prediction adjusted R2 > 0.037 across all EUR P-value thresholds (Fig 2A) and adjusted R2 

> 0.033 across all LAT P-value thresholds (Fig 2B). In Fig 2A, we observe that as the EUR 

P-value threshold becomes more stringent, the difference in prediction accuracy between 

EUR+LAT+ANC and EUR+LAT increases, because EUR is less able to capture polygenic 

ancestry effects (see above).

In the above results (Table 3 and Fig 2), we allowed each prediction method to optimize its 

mixing weights via an in-sample fit in the target sample. This procedure could in principle 

be susceptible to overfitting (Kooperberg, LeBlanc, & Obenchain, 2010; Wray et al., 2013). 

We did not expect overfitting to be a concern given the small number of mixing weights 

optimized (at most 3) relative to the target sample size (8,181) and given our use of adjusted 

R2 as the evaluation metric, but to verify this expectation, we repeated our analyses using 

10x9-fold cross-validation (see Methods). Methods that use two training populations 

remained much more accurate than single ancestry methods, as prediction accuracy 

decreased only very slightly (2-4% relative decrease vs. Table 3) for each method (S13 

Table). These slight decreases are expected, since mixing weights optimized within 10x9 

cross-validation are slightly suboptimal (due to reduced training data) and prediction 

accuracy is mildly sensitive to the choice of mixing weights (S2 Fig).

Analyses of type 2 diabetes in South Asians

We applied the same methods to predict T2D in South Asian target samples from the UK 

Biobank (row 5 of Table 1). We used publicly available European summary statistics from 

DIAGRAM (12,171 cases and 56,862 controls; effective sample size = 40,101) as European 

training data, South Asian summary statistics from SAT2D (Kooner et al., 2011) (5,561 

cases and 14,458 controls; effective sample size = 16,065) as South Asian training data, and 

UK Biobank genotypes and phenotypes (272 cases and 1,484 controls; effective sample size 

= 919) as South Asian validation data (see Methods).

Prediction accuracies (adjusted R2 on the liability scale (Lee et al., 2012), assuming sample 

prevalence 15%) and optimal weights for the 5 main methods (EUR, SAS, SAS+ANC, SAS

+LAT, EUR+SAS+ANC) are reported in Table 4 (other prediction metrics are reported in 

S14 Table). In each case, the best prediction accuracy was obtained using LD-pruning 

threshold RLD
2=0.8 (results using different LD-pruning thresholds are reported in S15 

Table); the value of the optimal P-value threshold PT was equal to 10-3 for EUR and 0.8 for 

SAS. EUR performed only 14% better than SAS despite the larger training sample size, 

again reflecting a tradeoff between sample size and target-matched LD patterns. EUR+SAS 

attained 72%-95% relative improvements vs. EUR and SAS respectively (and used a slightly 

larger weight for EUR than for SAS). In addition, EUR+SAS attained a 44% relative 
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improvement vs. EUR-SAS-meta (Table 4), again highlighting the advantages of optimizing 

mixing weights distinct from meta-analysis weights. Adding an ancestry predictor to EUR

+SAS produced an insignificant change in accuracy for EUR+ SAS +ANC compared to 

EUR+SAS; we note a modest correlation between each prediction method and the 

proportion of European-related ancestry (Reich, Thangaraj, Patterson, Price, & Singh, 2009) 

within South Asian samples (see S16 Table). We repeated our analyses using stratified 10-

fold cross-validation to estimate mixing weights (see Methods). We observed that methods 

that use two training populations continued to substantially outperform PRS using a single 

training population despite a decrease in prediction adjusted R2 (vs. Table 4) for each 

method, consistent with the limited sample size for estimating mixing weights (S17 Table).

Analyses of height in Africans

We applied the same methods to predict height in African target samples from the UK 

Biobank (row 6 of Table 1). We used European summary statistics from UK Biobank 

(113,660 samples; British ancestry only) as European training data, African summary 

statistics from ref. (N'Diaye et al., 2011) (20,427 samples) as African training data, and 

African UK Biobank genotypes and phenotypes (1,745 samples) as African validation data.

Prediction accuracies (adjusted R2) and optimal weights for the 5 main methods (EUR, 

AFR, AFR+ANC, EUR+AFR, EUR+AFR+ANC) are reported in Table 5. For EUR and 

AFR, the best prediction accuracy was obtained using RLD
2=0.2 and RLD

2=0.8 respectively, 

thus we used these respective values of RLD
2 for EUR and AFR in each PRS in all primary 

analyses (results using different LD thresholds are reported in S18 Table); the value of the 

optimal P-value threshold PT was equal to 10-3 for EUR and 0.05 for AFR. EUR performed 

much better than AFR, consistent with the far larger training sample size. Nevertheless, 

EUR+AFR attained a 30% improvement vs. EUR (using a larger weight for EUR than for 

AFR). EUR+AFR also attained a small relative improvement (7%) vs. EUR-AFR-meta 

(Table 5). Adding an ancestry predictor to EUR+AFR produced an insignificant change in 

accuracy for EUR+AFR+ANC compared to EUR+AFR; we note a modest correlation 

between each prediction method and the proportion of European-related ancestry (Reich et 

al., 2009) within African samples (see S19 Table). We repeated our analyses using stratified 

10-fold cross-validation to estimate mixing weights (see Methods). We observed that 

methods that use two training populations continued to substantially outperform PRS using a 

single training population despite a decrease in prediction adjusted R2 (vs. Table 5) for each 

method, consistent with the limited sample size for estimating mixing weights (S20 Table).

Discussion

We have shown that combining training data from European samples and training data from 

the target population attains a >70% relative improvement in prediction accuracy for type 2 

diabetes in both Latino and South Asian cohorts compared to prediction methods that use 

training data from a single population. In addition, this approach attains 30% relative 

improvement in prediction accuracy for height in an African cohort. These relative 

improvements are robust to overfitting, consistent with simulations and reduce the 

documented gap in risk prediction accuracy between European and non-European target 
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populations (Bustamante, De La Vega, & Burchard, 2011; International Schizophrenia 

Consortium et al., 2009; Popejoy & Fullerton, 2016; Rosenberg et al., 2010; Scutari et al., 

2016; Vilhjálmsson et al., 2015); we note that there are at least 35 phenotypes for which 

there are published GWAS data sets in Europeans and at least one non-European population 

(with minimum sample size of 8,000) that are listed in the NHGRI-EBI GWAS Catalog 

(MacArthur et al., 2017), where our approach could potentially be valuable (S21 Table). 

Intuitively, our approach leverages both large training sample sizes and training data with 

target-matched LD patterns. We note that the effects of differential tagging (or different 

causal effect sizes) in different populations can potentially be quantified using cross-

population genetic correlation (Brown, Ye, Price, & Zaitlen, in press; de Candia et al., 2013; 

Mancuso et al., 2016), and that leveraging data from a different population to improve 

predictions is a natural analogue to leveraging data from a correlated trait (Maier et al., 

2015).

Despite these advantages, our work is subject to limitations and leaves several questions 

open for future exploration. First, although we have demonstrated large relative 

improvements in prediction accuracy, absolute prediction accuracies are currently not large 

enough to achieve clinical utility, which will require larger sample sizes (Chatterjee et al., 

2013; Dudbridge, 2013); our simulations suggest that multi-ethnic polygenic risk scores will 

continue to produce improvements at larger sample sizes (Fig 1). Second, while our focus 

here was on prediction without using individual-level training data, when such data is 

available it may be possible to attain higher prediction accuracy using methods that fit all 

markers simultaneously, such as Best Linear Unbiased Predictor (BLUP) methods and their 

extensions (de los Campos et al., 2010; Golan & Rosset, 2014; Maier et al., 2015; Moser et 

al., 2015; Speed & Balding, 2014; Tucker et al., 2015; Weissbrod et al., 2016; Zhou et al., 

2013). Third, our LDpred risk prediction method (Vilhjálmsson et al., 2015), which analyzes 

summary statistics in conjunction with LD information from a reference panel, is more 

accurate in European populations than the informed LD-pruning + P-value thresholding 

approach employed here; we did not employ LDpred due to the complexities of admixture-

LD in analyses of admixed populations that explicitly model LD (Bulik-Sullivan et al., 

2015), but extending LDpred to handle these complexities could further improve accuracy. 

Fourth, we note that in our application to real phenotypes adding an ancestry predictor 

produced insignificant changes in prediction accuracy, primarily because ancestry effects are 

captured by the polygenic risk scores; adding an ancestry predictor only improves prediction 

when we use a stringent P-value threshold to build the polygenic risk score (Fig 2). Fifth, we 

have not considered here how to improve prediction accuracy in data sets with related 

individuals (Tucker et al., 2015). Sixth, we did not incorporate local ancestry, which could 

potentially improve prediction accuracy in admixed populations (Seldin, Pasaniuc, & Price, 

2011). Seventh, we did not incorporate data from the X chromosome, which is likely to 

harbor additional heritability that could improve prediction accuracy (Tukiainen et al., 

2014). Finally, we focused our analyses on common variants, but future work may wish to 

consider rare variants as well.
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Web Resources

PLINK: https://www.cog-genomics.org/plink2. WTCCC2 data set: http://www.wtccc.org.uk/

ccc2. SIGMA data set: http://www.type2diabetesgenetics.org. DIAGRAM summary 

association statistics: http://www.diagram-consortium/org/. UK Biobank data set: https://

www.ukbiobank.ac.uk. Fast PCA (EIGENSOFT version 6.1.4): http://

www.hsph.harvard.edu/alkes-price/software/. EIGENSTRAT (EIGENSOFT version 6.0.1): 

http://www.hsph.harvard.edu/alkes-price/software/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Accuracy of main prediction methods in simulations using subsets of chromosomes
We report results for A) 2:1 training sample size ratio (row 1 of Table 1) and B) 1:1 training 

sample size ratio (row 2 of Table 1). We report prediction accuracies for each of the 5 main 

prediction methods as a function of M/Msim, where M=232,629 is the total number of SNPs 

and Msim is the actual number of SNPS used in each simulation: 232,629 (all 

chromosomes), 68,188 (chromosomes 1-4), 38,412 (chromosomes 1-2), and 19,087 

(chromosome 1). Numerical results are provided in S5 Table.
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Fig 2. Accuracy of main prediction methods in analyses of type 2 diabetes in a Latino cohort as a 
function of P-value thresholds
We report prediction accuracies for each of the 5 main prediction methods as a function of 

(A) EUR P-value threshold, where applicable (with optimized LAT P-value threshold, where 

applicable) and (B) LAT P-value threshold, where applicable (with optimized EUR P-value 

threshold, where applicable). Numerical results are provided in S12a Table and S12b Table.
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Table 2
Accuracy of main prediction methods in simulations

A) Model Average weight (s.e.) associated to each predictor Average adj. R2 (s.e.)

European PRS Latino PRS

EUR 0.19449 (0.004) 0.03927 (0.002)

LAT 0.17780 (0.003) 0.03200 (0.001)

LAT+ANC 0.17613 (0.002) 0.04115 (0.002)

EUR+LAT 0.17847 (0.004) 0.15784 (0.003) 0.06441 (0.002)

EUR+LAT+ANC 0.19098 (0.004) 0.15578 (0.002) 0.07053 (0.002)

B) Model Average weight (s.e.) associated to each predictor Average adj. R2 (s.e.)

European PRS Latino PRS

EUR 0.08715 (0.007) 0.01156 (0.001)

LAT 0.18239 (0.003) 0.03391 (0.001)

LAT+ANC 0.17815 (0.002) 0.04202 (0.002)

EUR+LAT 0.07494 (0.008) 0.17485 (0.002) 0.04211 (0.001)

EUR+LAT+ANC 0.09070 (0.005) 0.17464 (0.002) 0.04751 (0.002)

We report results for A) 2:1 training sample size ratio (row 1 of Table 1) and B) 1:1 training sample size ratio (row 2 of Table 1). We report average 

adjusted R2 over 100 simulations for each of the 5 main prediction methods. We also report normalized weights, defined as the mixing weight 

(see Methods) multiplied by the standard deviation of the PRS.
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Table 3
Accuracy of main prediction methods in analyses of type 2 diabetes in a Latino cohort

Model Weights associated to each predictor Adjusted R2 P-value for improvement over simpler model

European PRS Latino PRS

EUR 0.16490 0.02700 <10−49

LAT 0.14332 0.02030 <10−37

LAT+ANC 0.14623 0.03362 <10−24

EUR+LAT 0.16344 0.14164 0.04735 <10−37

EUR+LAT+ANC 0.17629 0.14108 0.04736 0.3

EUR-LAT-meta 0.16404 0.03012 0.03770 NA

We report adjusted R2 on the liability scale for each of the 5 main prediction methods, as well as EUR-LAT-meta. We obtained similar relative 

results using NagelkerkeR2, R2 on the observed scale and AUC (S7 Table). P-values are from likelihood ratio tests comparing models EUR and 
LAT to the null model, model LAT+ANC to LAT, model EUR+LAT to EUR, and EUR+LAT+ANC to EUR+LAT. For the EUR model we used 

RLD2=0.8 and PT=0.05, for LAT we used RLD2=0.8 and PT=0.2, and for EUR-LAT-metawe used RLD2=0.8 and PT=1. We also report 

normalized weights, defined as the mixing weight  (see Methods) multiplied by the standard deviation of the PRS.
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Table 4
Accuracy of main prediction methods in analyses of type 2 diabetes in a South Asian 
cohort

Model
Weights associated to each predictor

Adjusted R2 P-value for improvement over simpler model
European PRS Latino PRS

EUR 0.09001 0.01767 <10-3

SAS 0.08488 0.01556 <10-3

SAS+ANC 0.08821 0.01572 0.28

EUR+SAS 0.08309 0.07746 0.03031 <10-2

EUR+SAS+ANC 0.08138 0.07989 0.02968 0.46

EUR-SAS-meta 0.08695 0.00497 0.02098 NA

We report adjusted R2 on the liability scale for each of the 5 main prediction methods, as well as EUR-SAS-meta. We obtained similar relative 

results using NagelkerkeR2, R2 on the observed scale and AUC (S14 Table). P-values are from likelihood ratio tests comparing models EUR and 
SAS to the null model, model SAS+ANC to SAS, model EUR+SAS to EUR, and EUR+LAT+ANC to EUR+SAS. For the EUR model we used 

RLD2=0.8 and PT=10-3, for SAS we used RLD2=0.8 and PT=0.8, and for EUR-SAS-metawe used RLD2=0.8 and PT=10-3. We also report 

normalized weights, defined as the mixing weight  (see Methods) multiplied by the standard deviation of the PRS.
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Table 5
Accuracy of main prediction methods in analyses of height in an African cohort

Model Weights associated to each predictor Adjusted R2 P-value for improvement over simpler model

European PRS African PRS

EUR 0.164 0.02618 <10-11

AFR 0.106 0.01074 <10-5

AFR+ANC 0.124 0.01331 0.01

EUR+AFR 0.155 0.092 0.03397 <10-3

EUR+AFR+ANC 0.150 0.102 0.03443 0.17

EUR-AFR-meta 0.151 0.027 0.03158 NA

We report adjusted R2 on the observed scale for each of the 5 main prediction methods, as well as EUR-AFR-meta. P-values are from likelihood 
ratio tests comparing models EUR and AFR to the null model, model AFR+ANC to AFR, model EUR+AFR to EUR, and EUR+LAT+ANC to 

EUR+AFR. For the EUR model we used RLD2=0.2 and PT=10-3, for AFR we used RLD2=0.8 and PT=0.05 and for EUR-AFR-meta we used 

RLD2=0.2and PT=10-6. We also report normalized weights, defined as the mixing weight  (see Methods) multiplied by the standard deviation 

of the PRS.
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